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On the Nature of Critical Points in Leakage Regimes
of a Conductor-Backed Coplanar Strip Line

Alexander B. YakovlevStudent Member, IEEEand George W. Hansomember, IEEE

Abstract—Leaky dominant mode propagation regimes of a a small air gap [7], where it was determined that an air
conductor-backed coplanar strip line are rigorously analyzed us- gap creates conditions for transformation of the TEM mode
ing the concept of critical or equilibrium points from catastrophe of traditional stripline into the leaky mode. The analysis of

and bifurcation theories, in conjunction with a full-wave integral leak h h | b ed tf tripli
equation solution. The existence of nondegenerate or Morse '€3Kag€ pnenomena has also been carried out for stripline

critical points (MCP’s) and degenerate or fold (turning) critical ~ With uniaxially anisotropic layers with an air gap [8]. Leakage
points (FP’s) in coupling and leakage regions are associated with effects have been observed and investigated for positive and
the occurrence of improper real and complex (leaky) solutions. npegative uniaxial substrates, where it was found that a proper

The locations and types of critical points determine the stability - ., qice of honding film material (used to eliminate the air gap)
and instability of the transmission line system with respect to

small changes in geometrical parameters. The dispersion behav- €8N suppress the undesired leakage.

ior of improper real and complex (leaky) solutions are efficientty ~ The leaky dominant mode phenomena has also been in-
reproduced in the local neighborhood of MCP’s and FP’s using vestigated for coplanar strip lines [9], [10], coupled slot
a Taylor series expansion about those points. The qualitative and |ineg [11], and broadside-coupled microstrip structures [3].

guantitative dynamic behavior of the transmission line modes . h .
can be investigated by examining the evolution of nondegenerate It is shown, for example, that for appropriate geometrical

and degenerate points versus some structural parameter, such Parameters, leakage in broadside-coupled microstrip [3] can
as strip width. The proposed analysis enables the prediction of exist at all frequencies.

bifurcation situations and the existence of improper real and The simultaneous propagation of both the bound and leaky

complex solution_s and gives a complete description of the system’s 4o minant modes in slot and conductor-backed coplanar strip

structural behavior. lines has been recently studied [12], [13], and a new improper

real (nonphysical) solution has been discovered. It is shown

I. INTRODUCTION that small changes of geometrical parameters can dramatically

HE LEAKAGE phenomenon for dominant or dominant€hange improper reallsolutions and generate a new impro_per
T like modes on printed transmission lines is a relativelfPMPplex (leaky) solution. The authors contend that the dis-
recent discovery. It has been observed that the leakage (i_f,}\_/ered effects can exist in most printed-circuit transmission
fects appear at high frequencies for some transmission HRES. _ ) )
structures [1], [2], and at all frequencies for others [3]. The The 'prqblenj of suppressing the leaky modes n printed
occurrence of leakage leads to a loss of power in transmittifgnsmission line structures has been addressed in seve.ral
or receiving systems, a decrease in thdactor in resonator Papers [14], [15]. It has been proposed that an appropri-
structures, and cross-talk and coupling between neighbor§ combination of geometrical parameters [14] or suitable
elements of printed integrated circuits. For example, theor&@nding films or superstrate layers [15] can suppress leakage.
ical and measured results obtained for conductor-backed sloth the present paper, a different view on the dominant or
line and coplanar waveguide show serious problems causkdninant-like leakage mode phenomena is developed. From
by leakage effects: cross-talk, coupling to neighboring linedle standpoint of catastrophe [16], [17] and bifurcation theories
and alteration of the wavelength [4]. The above-mentiond48], [19], the qualitative change in system characteristics
detremental effects are usually of the most concern, althouy small perturbations can be denoted as a bifurcation or
beneficial applications of leakage can be found in some noWspnching. The principles of catastrophe theory have been
devices [5] or in the area of leaky-wave antennas. successfully applied to the analysis of intertype oscillations in

It has recently been shown that a leaky dominant @pPen resonators [20] and to the investigation of mode coupling
dominant-like mode exists on most printed-circuit transmissidggions in open waveguide resonators [21]. A set of degenerate
lines. A leaky dominant mode has been found and experimediid nondegenerate points has been determined for complex
tally confirmed on microstrip line with an isotropic substrat#aves in multilayer cylindrical strip and slot lines [22].

[6]. It was observed that the leaky dominant mode propagatedn this paper, we apply the principles of bifurcation and

independently of the bound dominant mode. An independet@tastrophe theories to the dominant mode leakage phenomena

leaky dominant mode has also been found on stripline with @ printed transmission line structure. The specific exam-
ple of a conductor-backed coplanar strip line is presented,
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associated with certain types of critical points (CP’s). Specif- T T y T T

ically, the transition from a pair of real (proper-improper or 1.60 +

improper—improper) modes to a complex-conjugate improper

mode in the “spectral gap” region is associated with the

occurrence of a critical fold point (FP). The characteristic

intersection of a parabola and a straight line in the spectral gap

region is predicted by an analytic quadratic normal form. This

behavior in the spectral gap region is universal in the transition

from real to complex modes in a variety of waveguiding ™ | improperreal ;

structures, ranging from planar slabs to more complicated 130 __,/""_ M_

printed conductor and dielectric waveguides. proper real 'g’gl’k”yl’f;ofl”e’)"l”“
Another type of CP is associated with characteristic mode (odd)  *

coupling behavior, wherein two or more modes approach 1.20 L L L L

each other, then separate before crossing. This behavior is 30 50 70 90 110 130 150

found in a variety of shielded and open structures, both for Frequency (GHz)

dominant and higher-order modes [3], [23], [24], and can also (a)

be predicted by a quadratic normal form. Since the occurrence

of CP’s can be associated with interesting modal features 0.25 T T . T T

such as intermode coupling and leakage, the determination X X FP#2

of the location and types of CP’s in a region of interest may 015 | ')1(' ggz;

facilitate the rapid location of interesting modal behavior. The

dispersion behavior in the vicinity of a CP can be efficiently proper real

reconstructed using a Taylor series expansion about that point,

enabling the efficient determination of modal behavior before

evaluating a full-wave solution. 005 | i
The reader should be aware that different terminology is /

used in catastrophe and bifurcation theories. For convenience, improper complex

we will use the label “critical point” (CP) to describe certain -0.15 | (leaky mode)

points in(x, f) space which are associated with coupling and +

modal bifurcations. -0.25

=
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In order to investigate the association of CP’s with modal (b)

behavior, the example of a conductor-backed coplanar strig. 1. Dispersion characteristics for the (a) normalized phase(Refo )

line shown in the insert of Fig. 1(a) is considered. FuII—wav@dd(b) |eak1)ka?(e(]:magff/ko) anslt?ntSAin tpg ?;%e Q%'hh:' 0.25 for ad
H i~_fi H uctor-backe coplanar Stl‘lp Ine. An , which is associate

result; are _geperated using an electric-field integral equat(‘;ﬁfﬁi1 the fold catastrophe, is found in the spectral gap region.

technique similar to [25]. Enforcement of the boundary con-

dition requiring that the tangential electric field vanish on the

surface of all conducting strips results in a coupled system of : .

homogeneous integral equations in the axial-Fourier transfof?et[A] = 0. For proper bound modes the path of integration

m X o o :
domain (z — k.) or the Green’s function inversion is along the rdglaxis,

. whereas for improper modes the path is deformed into the
R ' B - complex k,-plane [25].
Ym Z/ glzla’sk2) - Jn(a') da’ =0, Equation (1) can be used to generate full-wave results for the
notE considered transmission line, and similar formulations can be
developed to model other printed geometries. This system of
whereé,, is a unit vector tangent to theth strip,g(x|x’; k.) equations also forms the basis for the determination of various
is the electric Green’s dyadicfn(a:’) is the unknown CP’s associated with the waveguiding structure. To determine
transform-domain surface current on thtd strip, andk. isthe CP’s, consider the smooth functidi(, f) = det[A(~, f)]
unknown propagation constant. The Green’s dyadic is givé#hthe complex domain of spectral parameters, wheie the
as a Sommerfeld-type integral over the transverse transfonermalized propagation constait/kq. Assume thatt (x, f)
variablek,. The unknown longitudinal and transverse surfadé an analytic function in the functional spa¢# of two
currents are expanded as a series of Chebyshev polynomietsnplex variables: and f. Investigating behavior o («, f)
and a Galerkin solution converts the system of integrid a certain domainD C C? and solving the problem
equations into a matrix syste(k., /)X = 0, where f for a discrete set of solutions of the characteristic equation
represents frequency add represents the vector of unknownH (x, f) = 0, we determine a set of regular points & «, f),
coefficients of the current density. A root search is performeachich are the modal solutions of the transmission line. One
to determine the value of propagation constant that forcest of CP's of H(k, f) can be obtained when a necessary

TETm, m=1,--- N Q)
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condition of the function’s extremum is satisfied. Define a set
of CP’s [17] Qcp of a mappingH: C? — C by
Vi rH(x, f) =0. )
Equation (2) is equivalent to the set of nonlinear equa-
tions of partial derivatives ofH(x, f) with respect tox
and f: Hi(k,f) = 0 and Hy(x,f) = 0. These CP’'s
usually determine local maxima, local minima, and saddles. If
V.. H(k, f) # 0 then the functional behavior in the vicinity
of a regular point can be easily obtained using the implicit
function theorem [16], where a unique curwe= «(f) or
f = f(x) through a regular point can be reconstructed. If
V..;H(k, f) = 0 then the implicit function theorem is no
longer applicable. However, if the Hessian matrix is nonsingu-
lar with the Hessian determinadtt[H,’ (s, f)] (2,7 = &, f)

& = [H!, H} = Bl Hf s, ) # 0 ®)

then, according to the Morse L emma [16], there is a smooth
change of coordinates such that the functidrcan be locally
represented by a quadratic canonical form. In other words,
an analytic representation off(x, f) exists in the local
neighborhood of CP’s defined by the set of equations (2) and
(3). A set of these points, called nondegenerate or Morse CP’s
(MCP’s), is denotedycp: {(km, fm)}, Where Qycpr C
Qcp. The concept of MCP’s is related to structural stability
of a system in a local region. It is shown [26] thE{x, f) is
structurally stable at the MC§,,,, f.). A function, whose set
of CP’s are nondegenerate (MCP’s), is called a Morse function
and its structural stability is guaranteed.

If the Hessian determinan{ is positive, nondegenerate
points define local minimum or maximum [16], [26]. The case
when ¢ is negative is related to the universal mode coupling
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behavior observed in many waveguiding structures [3], [23]ig- 2. Full-wave results for (a) normalized phase and (b) leakage constants

[24]. Local dynamical behavior of the functioH («, f) in a

bifurcation region can be determined by the simplest equatio@gion of improper real solutions.

called normal forms [19]. It can be shown [18] that in the
local neighborhood of the MCPx,,,, f,,) the normal form is
represented as the intersection of a saddle sufiges f) and
the mode coupling factot (x,, fm) :

(5 — "3m)2 -(f- fm)2 = H(Km, fm)- (4)

Equation (4) determines a set of hyperbolas centered at
(km, fm) in the coordinate systerfx, f). These hyperbolas
form the characteristic behavior typically seen when modes

are coupled together and, in this example, appear in the mode

versus frequency fow/h = 0.37. A pair of complex conjugate CP’s (CCP’s
#1 and#3) and a Morse Critical Point (MCR1) define the mode-coupling

If the MCP is obtained in the vicinity of the mode coupling
region, the qualitative and quantitative local structure can be
reproduced using a Taylor series expansion:

H(Iﬁ;, f) :H("?ma fm) + H,{g("? - "Jm) + H}(f - fm)

S (5 = ) + HL (5 = ) = fo)
+ %H}/f(f - frn)2

+ol([K = im| +1f = fm])*] =0

(5)

interaction of the two real improper modes as will be showhereo[(|x = km|+|f = fi|)?] are cubically small terms and

later, e.g., Fig. 2(a). If the coupling factal(r,, frm) IS

equal to zero, then the solution is locally reproduced as t#@ the condition (2), the partial derivativeli,

straight lines defined by equatiors= x,, + (f — fm) and H/,

) . " . ! s
& = km—(f— fm). The point of intersection of these lines is glete

all partial derivatives are calculated @ét,,, f,,). According

and

Rm,fm

are equal to zero and the local structure is com-

ff/’f&ie)fined by coefficients of the Hessian matrix and the

double point ofH(, f), which locally defines a double-pointcoupling factorH (., f,.), which determines the intensity of
bifurcation [18]. The functiorH («, f) is unstable at this point, the mode coupling.
and the system’s characteristics are qualitatively changed forA different type of critical point, called a fold or turning
small perturbations. IfH (%, fm) # 0 the double-point point [19], is related to the leakage phenomena observed in
bifurcation is broken into isolated solutions qualitativelymany waveguiding structures. A set of fold or turning points

determined by the normal form (4).

(FP’s) Qrp: {(ky, f7)}, obeys the following set of equations
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[19]: finite difference approximations. Since rigorous results for the
, considered structure have appeared in [12] and [13], the results
H(t, Dlws, 1) =He (B Dleng,p) = 0 presented here are intended to connect the previously described
6 =H,, (rx, [YH}(k, f)l(r;.;;) # 0. (6) behavior with the presence of certain types of CP's defined by
) ) ) (6) or (2) and (3).

It can be shown [19] that ifry, ff) is a fold or turning  The gccurrence of these CP’s is intimately connected with
point, then, locally H(x, f) is equivalently represented in thehe opserved physical phenomena, and the qualitative behavior
normal form is shown to obey the simple quadratic normal forms (4) or (7).

(- ﬁf)g F(f=fp), for &0, These normal forms help tQ provide insight in.to the pbserved
) interesting modal behavior in the mode coupling regions, and
(k—rp)”=(f = fr), for é<0. () " in the generation of leakage.

Fig. 1 demonstrates dispersion characteristics for the nor-
malized phase constant Réal/ky) and normalized leakage
constant Imagt. / k) for narrow strips withw/h = 0.25. For

for the 6>0 case with f < f¢, two branching solutions
Re[r(f)] of (x — x)® + (f — fy) = 0 generate a parabola,

and for f > f two equal solutiongtelr(f)] existas aStralghto(fompleteness, the even (proper) mode is shown along with

line x(f) = xy. This predicts the characteristic intersection : : : :

) . . the various proper and improper odd modes. Attention will

a parabola and a straight line that occurs at a point of mogde )

. . . . € focused on the odd modes for the remainder of the paper.
bifurcation, such as in the spectral gap region. Wliea f;

there is only one solutio;, f;) (FP), which occurs af the The behavior of the functiod (x, f) has been investigated

. . : : in the vicinity of the spectral gap region using the concept
intersection point of the two curves. Obvioudiy[x(f)] for , ) .
f<f; yields the solutions(f) = 0, and for /> f; two of CP’s defined by (6). A fold real valued point (Ff2)

branching solutions form a parabola in the imaginary plar#"?as been found in the spectral gap region at the intersection

of k(f). The above description clearly applies to the situation m;protper real and_lmlp:r;iegr;gorrgglex hsolunfons, having
shown in Fig. 1(a) and (b), which will be discussed later. Thlcgogzv('anna ienS(;gQQa’hQer)z = (1.3156,7.9536), where frequency
normal form(x — ;)% — (f — ff) can be investigated using e ' .

a similar evaluation. It is important to emphasize that the The qualitative local structure ol (s, f) in the spectral

normal form (7) is qualitatively related to the modal behavidgfoP edion 1S determlned by the ”O”T?a' form (7). WA 0, .
of improper real and complex solutions in the vicinity of'> previously described. A Taylor series expansion (5) gives

an FP. The FP satisfies (1), whereas the normal form antitative. behavior Oft{(r, f) in the vicinity O.f the FP

indicates that it will occur at a point of modal branching:”’ generating improper and proper. real_solutlons and the
A Taylor series expansion (5) reproduces quantitatively tHEProper complex (Ie_aky que) solution with goqd accurac,y,
local structure of the functiorH (x, f) in the vicinity of an dlthough the res_ult IS not mcludeq here. A pair of CCP's
FP (ks, fy). The fold catastrophe is locally determined b 1 a_nd £3). optalned as the solution of (6), is presented
H'(r, f) and coefficients of the Hessian matrix (@ts, f). n Fig. 1r ha:/mg COOI’dlnateg{lich,fcl,’g) = (16229 ¥

It should be noted that the system of (6) defines both rek .2149, 5.7915 £ 73.8442). These CCP’s are not associated

and complex CP’s. It was found that for this example th\gIth Igakage in. this figure, but V.Vi" pecome a pair of real FP's
CP’s were real or occurred in complex-conjugate pairs. TﬁéFs.’t”p ;N'dtz gwrheasei, resultlnglql mh Ieakage. o width f
real valued and complex-conjugate points will henceforth be Igs. 2 and 3 show that a small change In strip width from

denoted as FP’s and CCP’s, respectively. The normal for h = 0.370 to w/h = 0.372 results in an enormous change
(7) is applicable for real valued FP's, whefewill be real. in the improper real solutions and generates a new nonphysical
improper complex (leaky) solution. This qualitative change

in structural behavior is explained by the transformation of
the complex conjugate points into two real valued FP’s. It
The spectrum of all possible solutions for the conductois found that the pair of CCP’$1 and §3 with coordinates
backed coplanar stripline geometry presented in [12] aféci 3, fe1,3) = (1.5107F50.0119,7.8937 £ 70.2461), defined
[13], including real improper and proper modes and impropby the formulation (6), exists in the mode-coupling region
complex (leaky) modes, has been generated using the abavieimproper and new improper real solutions as depicted in
mentioned rigorous electric field integral equation formulatiofrig. 2. The local structure can be efficiently reproduced using
In the results to follow, the substrate thickness is set asTaylor series expansion (5) in the neighborhood of CCP’s
h = 1 cm. For the frequencies considered, this correspongisandf3. Small changes ofu/h can change the type of the
to the geometry investigated in [12] and [13]. In all of th€CP’s. It is observed that CCP#d and{3 transition into FP’s
following figures, modal solutions resulting from the set ofl and$3 with coordinategr 1, fr1) = (1.4865,8.3688) and
integral equations (1) are presented, except where results @g;, fr3) = (1.5315,7.4473) upon a slight increase in strip
explicitly denoted in the figure legend as “local structurevidth, as shown in Fig. 3. The transformation of CCP’s into
In this case quantitative dispersion characteristics have beeal valued FP’s is found to define new structural behavior,
generated by applying the quadratic formula to Taylor seriasd is associated with the creation of an improper complex
(5), resulting in an analytic formula fok(f) in terms of mode. The process of the transformation of CP’s is related
the various partial derivatives off (x, f). The derivatives to structural instability. In other words, small changes in a
in the expansion (5) have been calculated numerically usiggometrical parameter lead to new qualitative behavior of the

I1l. NUMERICAL RESULTS
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0.07 T T T T T H(Km, fm) = constant.
% FP#2
0.05 F : gﬁi’ of the MCP 41 10 (K1, fim1) = (1.5079,7.8516) (Fig. 3) in

comparison with significant changes of CCRlsand 3.
According to [26], nondegenerate points (MCP’s) define a
local minimum, maximum, and different kinds of saddles. If
the Hessian determinant is strictly negative, then a MCP is a
saddle point. Fig. 4 demonstrates a family of local structures
generated about their MCP’s versus strip widthh for values
considered in Figs. 2 and 3. For our purposes, the term “local
structure” will refer to the qualitative behavior predicted by
the appropriate normal form (4) or (7), which is quantified

003 | » MCP#1

\

improper complex

-0.03  properreal

-0.05 1 improper real

-0.07 : . L L : numerically by the Taylor series (5).
30 50 70 90 110 130 150 According to definitions given in Section II, we can con-
Frequency (GHz) clude that the local structures shown in Fig. 4 are the intersec-
(b) tion of a saddle surfacE (x, f) and the plane#l (s, fm) =

Fig. 3. Results for the case when strip width is increased slighty @onstant All presented local structures are determined by
(w/h = 0.372). The occurrence of a new leaky mode is associated witaxpanding about saddle points (MCR'E). Local structures
the transition of CCP’s into real valued FP's. associated with the transition region from a pair of real
improper modes to a complex-conjugate improper mode could
have been generated about the FP’s as well. It was found
system. As a result, the occurrence of a new improper complgat betweenw/h = 0.37040 and w/h = 0.370 45 there is
(leaky mode) solution and dramatic qualitative changes of thedouble point that determines structural instability. The local
improper real solutions, is connected with the transition efructure at a double point (d.p.) is the intersection of straight
a conjugate pair of complex CP’s into real valued FP’s anighes with H(x, f)|4,. = 0. The coordinates of CP’$l and
the formation of a new local structure. The real valued Ff3, and MCP#1 are equal here. Before and after this point a
§2 obtained in the spectral gap region is relatively unaffectegystem is structurally stable. The enormous change in the local
by the increase in strip width, with coordinates;2, f2) = structure when strip width is increased fromyh = 0.370
(1.3654,9.0028) in the casew/h = 0.370 and (ry2, fr2) = to w/h = 0.372 is explained by the sign ofi(x, f) at
(1.3676,9.0347) in the casew/h = 0.372. (Km, fm). Before a double poinH (x,,,, fm) IS positive, and
The phenomena wherein slight changes in strip width resalter H (,,, f») is negative.
in significant changes in modal behavior, including the gen- According to the normal form (4), the intersection of a
eration of new improper modes, were discussed in [12] asdddle surfacéf(x, f) with a positive or negativé! (s, f)
[13]. This can be explained by consideration of the CGFP determines a local structure, like the one shown in Fig. 4 for
transition described above, in conjunction with a consideratiasys = 0.370 or w/h = 0.372, respectively. In effect, a
of other CP’s that occur in the mode-coupling region. Ishange in the sign off (s, f..) determines which opposing
addition to the CP’s satisfying (6), it was discovered that @uadrants formed by the double-point bifurcation (locally in-
real MCP {1, defined by the set of (2) and (3), exists in theéersected straight lines at a double point wWiflix,,, f,) = 0)
interaction region of improper real solutions with coordinatee modal solution will occupy, as explained in the discussion
(Km1, fm1) = (1.5110,7.9101), as demonstrated in Fig. 2.succeeding (4). It should be noted that the improper real
A small increase in strip width slightly changes the locatiosolutions demonstrated in Fig. 4 in the local vicinity of a
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width from w/h = 0.2 to w/h = 0.6. Marked arrows are
related to the direction of the critical point movement. The pair
of CCP’s{1 and}3 exists fromw/h = 0.2 up to a double point
A, which is betweenv/h = 0.37040 and w/h = 0.37045,
as discussed previously. For instance, Fig. 2 depicts the modal
improper complex strupture at a value af /h just prior tq point4, whereas Fig. 3
(leaky mode) § depicts the structure atia/h value slightly greater than that at
point A. After point A two real valued FP’41 and$3 appear
and move in opposite directions.
It should be noted that an improper complex (leaky mode)
solution occurs at pointi. The transformation of real valued
() FP’s £1 and 2 into CCP’s appears at a singular poift
Fig. 5. Dispersion results for wider strige/k = 0.6), where the simulta- which is found within the range 0.3855 and 0.3856ugfh
neous propagation _of bound and leaky modes is observed. A set of real RPgyes. The improper real solution that exists between the two
and CCP’s is obtained. . . . . .
leaky mode regimes is maintained between poiatand B
and disappears at a singular poit Fig. 3 demonstrates the
double point can be adequately reproduced by the nornmabdal behavior before poinB (just after point4), whereas
forms (4) and (7). Fig. 5 shows the modal structure after paiit The improper
Fig. 5 shows that for wider stripguv/h = 0.6) the spectral complex (nonphysical) leaky mode solution, generated at point
gap disappears and the simultaneous propagation of bound andoins the improper physical leaky mode defined by the FP
leaky modes occurs [12]. A set of CP’s has been obtained firat pointB, where we use the term physical and nonphysical
this geometry. A pair of CCP’41 and {2 with coordinates as discussed by Oliner [12], [13].
(Fe1,2, fer,2) = (1.3459 F 50.1012, 9.4987 F 33.8399) is de- According to Fig. 6, MCR1 passes through a double point
termined as the solution of (6). The real FPRis obtained in A, which determines a point of structural instability. A third
the intersection point of improper real and complex solutionsingular pointC' has been found in the range of 0.3385 and
and has coordinateS: s, fr3) = (1.6303,4.3357). The real 0.3390 values of strip width. A pair of complex conjugate
MCP 1 has been moved to the positiofkm,1, fm1) = MCP’s #1 and 2 transitions into real valued MCP’s at this
(1.3068, 6.3346). It should be noted that the normal formpoint, and the local structure is qualitatively changed. The
(4) represents the qualitative dynamical behavior of dispersiemolution of Imagk./ko) and Redlf) of CP’'s and MCP’s
curves in a local neighborhood of MCP’s. This corresponds trsus strip width is shown in Fig. 7. The presented imaginary
small perturbations which result in small coupling effects. Theharacteristics are related to the real ones demonstrated in
qualitative and quantitative local structure can be reproducEd). 6. It can be observed that two CCP{$ and 43 are
using a Taylor series expansion (5) in the vicinity of MCP'sransformed into real FP’s moving apart from poist The
for a small value of the coupling factd (., fm)- improper real solution (no imaginary part) exists between
The qualitative and quantitative dynamic behavior of thpoints A and B. A conjugate pair of complex CP’sl and
coplanar line is investigated by examining the evolution @ is generated at poinB. Complex MCP’st1 and §2 are
MCP’s, CCP’s, and FP’s versus strip width. Fig. 6 shows theined at pointC and move in opposite directions.
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0.3 i . i of the CP’s, but allows for the rapid location of regions in
~ o reciprocal(x, f) space which contain interesting and important
PG ] features associated with leakage.
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