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On the Nature of Critical Points in Leakage Regimes
of a Conductor-Backed Coplanar Strip Line

Alexander B. Yakovlev,Student Member, IEEE, and George W. Hanson,Member, IEEE

Abstract—Leaky dominant mode propagation regimes of a
conductor-backed coplanar strip line are rigorously analyzed us-
ing the concept of critical or equilibrium points from catastrophe
and bifurcation theories, in conjunction with a full-wave integral
equation solution. The existence of nondegenerate or Morse
critical points (MCP’s) and degenerate or fold (turning) critical
points (FP’s) in coupling and leakage regions are associated with
the occurrence of improper real and complex (leaky) solutions.
The locations and types of critical points determine the stability
and instability of the transmission line system with respect to
small changes in geometrical parameters. The dispersion behav-
ior of improper real and complex (leaky) solutions are efficiently
reproduced in the local neighborhood of MCP’s and FP’s using
a Taylor series expansion about those points. The qualitative and
quantitative dynamic behavior of the transmission line modes
can be investigated by examining the evolution of nondegenerate
and degenerate points versus some structural parameter, such
as strip width. The proposed analysis enables the prediction of
bifurcation situations and the existence of improper real and
complex solutions and gives a complete description of the system’s
structural behavior.

I. INTRODUCTION

T HE LEAKAGE phenomenon for dominant or dominant-
like modes on printed transmission lines is a relatively

recent discovery. It has been observed that the leakage ef-
fects appear at high frequencies for some transmission line
structures [1], [2], and at all frequencies for others [3]. The
occurrence of leakage leads to a loss of power in transmitting
or receiving systems, a decrease in the-factor in resonator
structures, and cross-talk and coupling between neighboring
elements of printed integrated circuits. For example, theoret-
ical and measured results obtained for conductor-backed slot
line and coplanar waveguide show serious problems caused
by leakage effects: cross-talk, coupling to neighboring lines,
and alteration of the wavelength [4]. The above-mentioned
detremental effects are usually of the most concern, although
beneficial applications of leakage can be found in some novel
devices [5] or in the area of leaky-wave antennas.

It has recently been shown that a leaky dominant or
dominant-like mode exists on most printed-circuit transmission
lines. A leaky dominant mode has been found and experimen-
tally confirmed on microstrip line with an isotropic substrate
[6]. It was observed that the leaky dominant mode propagates
independently of the bound dominant mode. An independent
leaky dominant mode has also been found on stripline with
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a small air gap [7], where it was determined that an air
gap creates conditions for transformation of the TEM mode
of traditional stripline into the leaky mode. The analysis of
leakage phenomena has also been carried out for stripline
with uniaxially anisotropic layers with an air gap [8]. Leakage
effects have been observed and investigated for positive and
negative uniaxial substrates, where it was found that a proper
choice of bonding film material (used to eliminate the air gap)
can suppress the undesired leakage.

The leaky dominant mode phenomena has also been in-
vestigated for coplanar strip lines [9], [10], coupled slot
lines [11], and broadside-coupled microstrip structures [3].
It is shown, for example, that for appropriate geometrical
parameters, leakage in broadside-coupled microstrip [3] can
exist at all frequencies.

The simultaneous propagation of both the bound and leaky
dominant modes in slot and conductor-backed coplanar strip
lines has been recently studied [12], [13], and a new improper
real (nonphysical) solution has been discovered. It is shown
that small changes of geometrical parameters can dramatically
change improper real solutions and generate a new improper
complex (leaky) solution. The authors contend that the dis-
covered effects can exist in most printed-circuit transmission
lines.

The problem of suppressing the leaky modes in printed
transmission line structures has been addressed in several
papers [14], [15]. It has been proposed that an appropri-
ate combination of geometrical parameters [14] or suitable
bonding films or superstrate layers [15] can suppress leakage.

In the present paper, a different view on the dominant or
dominant-like leakage mode phenomena is developed. From
the standpoint of catastrophe [16], [17] and bifurcation theories
[18], [19], the qualitative change in system characteristics
by small perturbations can be denoted as a bifurcation or
branching. The principles of catastrophe theory have been
successfully applied to the analysis of intertype oscillations in
open resonators [20] and to the investigation of mode coupling
regions in open waveguide resonators [21]. A set of degenerate
and nondegenerate points has been determined for complex
waves in multilayer cylindrical strip and slot lines [22].

In this paper, we apply the principles of bifurcation and
catastrophe theories to the dominant mode leakage phenomena
in a printed transmission line structure. The specific exam-
ple of a conductor-backed coplanar strip line is presented,
although the ideas are general and applicable to a wide range
of waveguiding structures. Our main goal is to show that
certain mode bifurcations and mode coupling behavior can be
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associated with certain types of critical points (CP’s). Specif-
ically, the transition from a pair of real (proper-improper or
improper–improper) modes to a complex-conjugate improper
mode in the “spectral gap” region is associated with the
occurrence of a critical fold point (FP). The characteristic
intersection of a parabola and a straight line in the spectral gap
region is predicted by an analytic quadratic normal form. This
behavior in the spectral gap region is universal in the transition
from real to complex modes in a variety of waveguiding
structures, ranging from planar slabs to more complicated
printed conductor and dielectric waveguides.

Another type of CP is associated with characteristic mode
coupling behavior, wherein two or more modes approach
each other, then separate before crossing. This behavior is
found in a variety of shielded and open structures, both for
dominant and higher-order modes [3], [23], [24], and can also
be predicted by a quadratic normal form. Since the occurrence
of CP’s can be associated with interesting modal features
such as intermode coupling and leakage, the determination
of the location and types of CP’s in a region of interest may
facilitate the rapid location of interesting modal behavior. The
dispersion behavior in the vicinity of a CP can be efficiently
reconstructed using a Taylor series expansion about that point,
enabling the efficient determination of modal behavior before
evaluating a full-wave solution.

The reader should be aware that different terminology is
used in catastrophe and bifurcation theories. For convenience,
we will use the label “critical point” (CP) to describe certain
points in space which are associated with coupling and
modal bifurcations.

II. THEORY

In order to investigate the association of CP’s with modal
behavior, the example of a conductor-backed coplanar strip
line shown in the insert of Fig. 1(a) is considered. Full-wave
results are generated using an electric-field integral equation
technique similar to [25]. Enforcement of the boundary con-
dition requiring that the tangential electric field vanish on the
surface of all conducting strips results in a coupled system of
homogeneous integral equations in the axial-Fourier transform
domain

(1)

where is a unit vector tangent to theth strip,
is the electric Green’s dyadic, is the unknown
transform-domain surface current on theth strip, and is the
unknown propagation constant. The Green’s dyadic is given
as a Sommerfeld-type integral over the transverse transform
variable The unknown longitudinal and transverse surface
currents are expanded as a series of Chebyshev polynomials,
and a Galerkin solution converts the system of integral
equations into a matrix system where
represents frequency and represents the vector of unknown
coefficients of the current density. A root search is performed
to determine the value of propagation constant that forces

(a)

(b)

Fig. 1. Dispersion characteristics for the (a) normalized phase Real(kz=k0)
and (b) leakage Imag(kz=k0) constants in the case ofw=h = 0:25 for a
conductor-backed coplanar strip line. An FP (FP]2); which is associated
with the fold catastrophe, is found in the spectral gap region.

For proper bound modes the path of integration
for the Green’s function inversion is along the real-axis,
whereas for improper modes the path is deformed into the
complex -plane [25].

Equation (1) can be used to generate full-wave results for the
considered transmission line, and similar formulations can be
developed to model other printed geometries. This system of
equations also forms the basis for the determination of various
CP’s associated with the waveguiding structure. To determine
CP’s, consider the smooth function
in the complex domain of spectral parameters, whereis the
normalized propagation constant Assume that
is an analytic function in the functional space of two
complex variables and Investigating behavior of
in a certain domain and solving the problem
for a discrete set of solutions of the characteristic equation

we determine a set of regular points of
which are the modal solutions of the transmission line. One
set of CP’s of can be obtained when a necessary
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condition of the function’s extremum is satisfied. Define a set
of CP’s [17] of a mapping by

(2)

Equation (2) is equivalent to the set of nonlinear equa-
tions of partial derivatives of with respect to
and and These CP’s
usually determine local maxima, local minima, and saddles. If

then the functional behavior in the vicinity
of a regular point can be easily obtained using the implicit
function theorem [16], where a unique curve or

through a regular point can be reconstructed. If
then the implicit function theorem is no

longer applicable. However, if the Hessian matrix is nonsingu-
lar with the Hessian determinant

(3)

then, according to the Morse L emma [16], there is a smooth
change of coordinates such that the functioncan be locally
represented by a quadratic canonical form. In other words,
an analytic representation of exists in the local
neighborhood of CP’s defined by the set of equations (2) and
(3). A set of these points, called nondegenerate or Morse CP’s
(MCP’s), is denoted where

The concept of MCP’s is related to structural stability
of a system in a local region. It is shown [26] that is
structurally stable at the MCP A function, whose set
of CP’s are nondegenerate (MCP’s), is called a Morse function
and its structural stability is guaranteed.

If the Hessian determinant is positive, nondegenerate
points define local minimum or maximum [16], [26]. The case
when is negative is related to the universal mode coupling
behavior observed in many waveguiding structures [3], [23],
[24]. Local dynamical behavior of the function in a
bifurcation region can be determined by the simplest equations
called normal forms [19]. It can be shown [18] that in the
local neighborhood of the MCP the normal form is
represented as the intersection of a saddle surface and
the mode coupling factor,

(4)

Equation (4) determines a set of hyperbolas centered at
in the coordinate system These hyperbolas

form the characteristic behavior typically seen when modes
are coupled together and, in this example, appear in the mode
interaction of the two real improper modes as will be shown
later, e.g., Fig. 2(a). If the coupling factor is
equal to zero, then the solution is locally reproduced as two
straight lines defined by equations and

The point of intersection of these lines is a
double point of which locally defines a double-point
bifurcation [18]. The function is unstable at this point,
and the system’s characteristics are qualitatively changed for
small perturbations. If the double-point
bifurcation is broken into isolated solutions qualitatively
determined by the normal form (4).

(a)

(b)

Fig. 2. Full-wave results for (a) normalized phase and (b) leakage constants
versus frequency forw=h = 0:37: A pair of complex conjugate CP’s (CCP’s
]1 and ]3) and a Morse Critical Point (MCP]1) define the mode-coupling
region of improper real solutions.

If the MCP is obtained in the vicinity of the mode coupling
region, the qualitative and quantitative local structure can be
reproduced using a Taylor series expansion:

(5)

where are cubically small terms and
all partial derivatives are calculated at According
to the condition (2), the partial derivatives and

are equal to zero and the local structure is com-
pletely defined by coefficients of the Hessian matrix and the
coupling factor which determines the intensity of
the mode coupling.

A different type of critical point, called a fold or turning
point [19], is related to the leakage phenomena observed in
many waveguiding structures. A set of fold or turning points
(FP’s) obeys the following set of equations
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[19]:

(6)

It can be shown [19] that if is a fold or turning
point, then, locally, is equivalently represented in the
normal form

for

for (7)

for the case with two branching solutions
of generate a parabola,

and for two equal solutions exist as a straight
line This predicts the characteristic intersection of
a parabola and a straight line that occurs at a point of mode
bifurcation, such as in the spectral gap region. When
there is only one solution (FP), which occurs at the
intersection point of the two curves. Obviously for

yields the solution and for two
branching solutions form a parabola in the imaginary plane
of The above description clearly applies to the situation
shown in Fig. 1(a) and (b), which will be discussed later. The
normal form can be investigated using
a similar evaluation. It is important to emphasize that the
normal form (7) is qualitatively related to the modal behavior
of improper real and complex solutions in the vicinity of
an FP. The FP satisfies (1), whereas the normal form (7)
indicates that it will occur at a point of modal branching.
A Taylor series expansion (5) reproduces quantitatively the
local structure of the function in the vicinity of an
FP The fold catastrophe is locally determined by

and coefficients of the Hessian matrix at
It should be noted that the system of (6) defines both real
and complex CP’s. It was found that for this example the
CP’s were real or occurred in complex-conjugate pairs. The
real valued and complex-conjugate points will henceforth be
denoted as FP’s and CCP’s, respectively. The normal form
(7) is applicable for real valued FP’s, wherewill be real.

III. N UMERICAL RESULTS

The spectrum of all possible solutions for the conductor-
backed coplanar stripline geometry presented in [12] and
[13], including real improper and proper modes and improper
complex (leaky) modes, has been generated using the above-
mentioned rigorous electric field integral equation formulation.
In the results to follow, the substrate thickness is set as

cm. For the frequencies considered, this corresponds
to the geometry investigated in [12] and [13]. In all of the
following figures, modal solutions resulting from the set of
integral equations (1) are presented, except where results are
explicitly denoted in the figure legend as “local structure.”
In this case quantitative dispersion characteristics have been
generated by applying the quadratic formula to Taylor series
(5), resulting in an analytic formula for in terms of
the various partial derivatives of The derivatives
in the expansion (5) have been calculated numerically using

finite difference approximations. Since rigorous results for the
considered structure have appeared in [12] and [13], the results
presented here are intended to connect the previously described
behavior with the presence of certain types of CP’s defined by
(6) or (2) and (3).

The occurrence of these CP’s is intimately connected with
the observed physical phenomena, and the qualitative behavior
is shown to obey the simple quadratic normal forms (4) or (7).
These normal forms help to provide insight into the observed
interesting modal behavior in the mode coupling regions, and
in the generation of leakage.

Fig. 1 demonstrates dispersion characteristics for the nor-
malized phase constant Real and normalized leakage
constant Imag for narrow strips with For
completeness, the even (proper) mode is shown along with
the various proper and improper odd modes. Attention will
be focused on the odd modes for the remainder of the paper.
The behavior of the function has been investigated
in the vicinity of the spectral gap region using the concept
of CP’s defined by (6). A fold real valued point (FP
has been found in the spectral gap region at the intersection
of improper real and improper complex solutions, having
coordinates where frequency
is given in gigahertz.

The qualitative local structure of in the spectral
gap region is determined by the normal form (7) with
as previously described. A Taylor series expansion (5) gives
quantitative behavior of in the vicinity of the FP

generating improper and proper real solutions and the
improper complex (leaky mode) solution with good accuracy,
although the result is not included here. A pair of CCP’s

and obtained as the solution of (6), is presented
in Fig. 1, having coordinates

These CCP’s are not associated
with leakage in this figure, but will become a pair of real FP’s
as strip width increases, resulting in leakage.

Figs. 2 and 3 show that a small change in strip width from
to results in an enormous change

in the improper real solutions and generates a new nonphysical
improper complex (leaky) solution. This qualitative change
in structural behavior is explained by the transformation of
the complex conjugate points into two real valued FP’s. It
is found that the pair of CCP’s and with coordinates

defined
by the formulation (6), exists in the mode-coupling region
of improper and new improper real solutions as depicted in
Fig. 2. The local structure can be efficiently reproduced using
a Taylor series expansion (5) in the neighborhood of CCP’s

and Small changes of can change the type of the
CP’s. It is observed that CCP’s and transition into FP’s

and with coordinates and
upon a slight increase in strip

width, as shown in Fig. 3. The transformation of CCP’s into
real valued FP’s is found to define new structural behavior,
and is associated with the creation of an improper complex
mode. The process of the transformation of CP’s is related
to structural instability. In other words, small changes in a
geometrical parameter lead to new qualitative behavior of the
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(a)

(b)

Fig. 3. Results for the case when strip width is increased slightly to
(w=h = 0:372): The occurrence of a new leaky mode is associated with
the transition of CCP’s into real valued FP’s.

system. As a result, the occurrence of a new improper complex
(leaky mode) solution and dramatic qualitative changes of the
improper real solutions, is connected with the transition of
a conjugate pair of complex CP’s into real valued FP’s and
the formation of a new local structure. The real valued FP

obtained in the spectral gap region is relatively unaffected
by the increase in strip width, with coordinates

in the case and
in the case

The phenomena wherein slight changes in strip width result
in significant changes in modal behavior, including the gen-
eration of new improper modes, were discussed in [12] and
[13]. This can be explained by consideration of the CCPFP
transition described above, in conjunction with a consideration
of other CP’s that occur in the mode-coupling region. In
addition to the CP’s satisfying (6), it was discovered that a
real MCP defined by the set of (2) and (3), exists in the
interaction region of improper real solutions with coordinates

, as demonstrated in Fig. 2.
A small increase in strip width slightly changes the location

Fig. 4. A family of local structures defined by MCP’s for differentw=h;
which is the result of intersection of a saddle surfaceH(�; f) and the planes
H(�m; fm) = constant:

of the MCP to (Fig. 3) in
comparison with significant changes of CCP’sand

According to [26], nondegenerate points (MCP’s) define a
local minimum, maximum, and different kinds of saddles. If
the Hessian determinant is strictly negative, then a MCP is a
saddle point. Fig. 4 demonstrates a family of local structures
generated about their MCP’s versus strip width for values
considered in Figs. 2 and 3. For our purposes, the term “local
structure” will refer to the qualitative behavior predicted by
the appropriate normal form (4) or (7), which is quantified
numerically by the Taylor series (5).

According to definitions given in Section II, we can con-
clude that the local structures shown in Fig. 4 are the intersec-
tion of a saddle surface and the planes
constant All presented local structures are determined by
expanding about saddle points (MCP’s Local structures
associated with the transition region from a pair of real
improper modes to a complex-conjugate improper mode could
have been generated about the FP’s as well. It was found
that between and there is
a double point that determines structural instability. The local
structure at a double point (d.p.) is the intersection of straight
lines with The coordinates of CP’s and

and MCP are equal here. Before and after this point a
system is structurally stable. The enormous change in the local
structure when strip width is increased from
to is explained by the sign of at

Before a double point is positive, and
after is negative.

According to the normal form (4), the intersection of a
saddle surface with a positive or negative
determines a local structure, like the one shown in Fig. 4 for

or respectively. In effect, a
change in the sign of determines which opposing
quadrants formed by the double-point bifurcation (locally in-
tersected straight lines at a double point with
the modal solution will occupy, as explained in the discussion
succeeding (4). It should be noted that the improper real
solutions demonstrated in Fig. 4 in the local vicinity of a
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(a)

(b)

Fig. 5. Dispersion results for wider strips(w=h = 0:6); where the simulta-
neous propagation of bound and leaky modes is observed. A set of real FP’s
and CCP’s is obtained.

double point can be adequately reproduced by the normal
forms (4) and (7).

Fig. 5 shows that for wider strips the spectral
gap disappears and the simultaneous propagation of bound and
leaky modes occurs [12]. A set of CP’s has been obtained for
this geometry. A pair of CCP’s and with coordinates

is de-
termined as the solution of (6). The real FPis obtained in
the intersection point of improper real and complex solutions,
and has coordinates The real
MCP has been moved to the position

It should be noted that the normal form
(4) represents the qualitative dynamical behavior of dispersion
curves in a local neighborhood of MCP’s. This corresponds to
small perturbations which result in small coupling effects. The
qualitative and quantitative local structure can be reproduced
using a Taylor series expansion (5) in the vicinity of MCP’s
for a small value of the coupling factor

The qualitative and quantitative dynamic behavior of the
coplanar line is investigated by examining the evolution of
MCP’s, CCP’s, and FP’s versus strip width. Fig. 6 shows the

Fig. 6. The evolution of Real(kz=k0) and Real(f) of CP’s and MCP’s
within the range 0.2 and 0.6 ofw=h: Singular pointsA;B; andC determine
the points of rapid changes in system characteristics, at which points the
transmission line structure is unstable.

evolution of Real and Real of CP’s versus strip
width from to Marked arrows are
related to the direction of the critical point movement. The pair
of CCP’s and exists from up to a double point

which is between and
as discussed previously. For instance, Fig. 2 depicts the modal
structure at a value of just prior to point whereas Fig. 3
depicts the structure at a value slightly greater than that at
point After point two real valued FP’s and appear
and move in opposite directions.

It should be noted that an improper complex (leaky mode)
solution occurs at point The transformation of real valued
FP’s and into CCP’s appears at a singular point
which is found within the range 0.3855 and 0.3856 of
values. The improper real solution that exists between the two
leaky mode regimes is maintained between pointsand
and disappears at a singular point Fig. 3 demonstrates the
modal behavior before point (just after point whereas
Fig. 5 shows the modal structure after point The improper
complex (nonphysical) leaky mode solution, generated at point

joins the improper physical leaky mode defined by the FP
at point where we use the term physical and nonphysical

as discussed by Oliner [12], [13].
According to Fig. 6, MCP passes through a double point
which determines a point of structural instability. A third

singular point has been found in the range of 0.3385 and
0.3390 values of strip width. A pair of complex conjugate
MCP’s and transitions into real valued MCP’s at this
point, and the local structure is qualitatively changed. The
evolution of Imag and Real of CP’s and MCP’s
versus strip width is shown in Fig. 7. The presented imaginary
characteristics are related to the real ones demonstrated in
Fig. 6. It can be observed that two CCP’s and are
transformed into real FP’s moving apart from point The
improper real solution (no imaginary part) exists between
points and A conjugate pair of complex CP’s and

is generated at point Complex MCP’s and are
joined at point and move in opposite directions.
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(a)

(b)

Fig. 7. The evolution of Imag(kz=k0) and Real(f) of (a) CP’s and (b)
MCP’s within the range ofw=h related to Fig. 6. The improper real solution
exists between singular pointsA andB:

Figs. 6 and 7 carry important information about regions of
structural instability (Points and and regions of the
appearance and disappearance of improper real and complex
solutions.

IV. CONCLUSION

The concept of CP’s from catastrophe and bifurcation
theories is a powerful approach for examining qualitative and
quantitative dynamic behavior of a system. Based on the deter-
mination of degenerated or nondegenerated CP’s, the evolution
of CP’s can be generated and regions of existence, appearance,
and disappearance of improper real and complex (leaky mode)
solutions can be predicted. It is found that a degenerate
point, determining the fold catastrophe, is associated with the
universal spectral gap behavior found in the transition from
a bound to a leaky regime in various types of waveguiding
structures. The proposed analysis enables determination of
regions of structural stability and instability. It is shown that
changes in the types of CP’s are related to qualitative changes
of structural characteristics of a system. The presented method
necessitates the use of a full-wave solution for determination

of the CP’s, but allows for the rapid location of regions in
reciprocal space which contain interesting and important
features associated with leakage.
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